llm -m qwen3-next-80b-a3b-thinking "An ASCII of spongebob"
Here's a classic ASCII art representation of SpongeBob SquarePants:
.------.
/ o o \
| |
| \___/ |
\_______/
llm -m chutes/Qwen/Qwen3-Coder-480B-A35B-Instruct-FP8 \
"An ASCII of spongebob"
Here's an ASCII art of SpongeBob SquarePants:
.--..--..--..--..--..--.
.' \ (`._ (_) _ \
.' | '._) (_) |
\ _.')\ .----..--.' /
|(_.' | / .-\-. \---.
\ 0| | ( O| O) | |
| _ | .--.____.'._.-. |
\ (_) | o -` .-` |
| \ |`-._ _ _ _ _\ /
\ | | `. |_||_| |
| o | \_ \ | -. .-.
|.-. \ `--..-' O | `.`-' .'
_.' .' | `-.-' /-.__ ' .-'
.' `-.` '.|='=.='=.='=.='=|._/_ `-'.'
`-._ `. |________/\_____| `-.'
.' ).| '=' '='\/ '=' |
`._.` '---------------'
//___\ //___\
|| ||
||_.-. ||_.-.
(_.--__) (_.--__)
Meta: I generated a few dozen spongebobs last night on the same model and NONE where as good as this. Most started well but collapsed into decoherence at the end - missing the legs off. Then this morning the very same prompt to the same model API produced a perfect bob on the first attempt. Can utilization affect response quality, if all else remains constant? Or was it just random luck?Edit: Ok, the very next attempt, a few minutes later, failed, so I guess it is just random, and you have about a 1 in 10 chance of getting a perfect spongebob from qwen3-coder, and ~0 chance with qwen3-next.
I think there is some distillation relationship between Kimi K2 and Qwen Coder or other related other models, or same training data. I tried most of LLMs, only kimi K2 gave the exact same ASCII. kimi K2: Here’s a classic ASCII art of SpongeBob SquarePants for you:
.--..--..--..--..--..--.
.' \ (`._ (_) _ \
.' | '._) (_) |
\ _.')\ .----..---. /
|(_.' | / .-\-. \ |
\ 0| | ( O| O) | o|
| _ | .--.____.'._.-. |
\ (_) | o -` .-` |
| \ |`-._ _ _ _ _\ /
\ | | `. |_||_| |
| o | \_ \ | -. .-.
|.-. \ `--..-' O | `.`-' .'
_.' .' | `-.-' /-.__ ' .-'
.' `-.` '.|='=.='=.='=.='=|._/_ `-'.'
`-._ `. |________/\_____| `-.'
.' ).| '=' '='\/ '=' |
`._.` '---------------'
//___\ //___\
|| ||
||_.-. ||_.-.
(_.--__) (_.--__)
Enjoy your SpongeBob ASCII!I realize my SpongeBob post came off flippant, and that wasn't the intent. The Spongebob ASCII test (picked up from Qwen's own Twitter) is explicitly a rote-memorization probe; bigger dense models usually ace it because sheer parameter count can store the sequence
With Qwen3's sparse-MoE, though, the path to that memory is noisier: two extra stochastic draws (a) which expert(s) fire, (b) which token gets sampled from them. Add the new gated-attention and multi-token heads and you've got a pipeline where a single routing flake or a dud expert can break vertical alignment halfway down the picture.
Anyway, I think qwen3-coder was uniquely trained on this - so it's not a fair comparison. Here are some other qwen3 models:
Model: chutes/Qwen/Qwen3-235B-A22B
/~\
( * * )
( o o o )
\ - /
\ /\ /
\ /
\/
/|||\
/|||||\
/||||||||\
( o o o )
\ W /
\___/
Model: chutes/Qwen/Qwen3-235B-A22B-Instruct-2507 /\_/\
( o.o )
> ^ <
/ \
| |
| |
\ /
'-'-'
Model: chutes/Qwen/Qwen3-235B-A22B-Thinking-2507 .-----------.
| [] [] |
| |
| __ __ |
| | || | |
| |__||__| |
| |
'-----------'
Model: chutes/Qwen/Qwen3-Next-80B-A3B-Instruct __
/ \
/ \
/ \
/ \
/__________\
| o o |
| __ |
| \____/ |
| |
| ________ |
| \ / |
| \____/ |
| |
|____________|
___________
/ \
/ \
| _______ |
| | | |
| | ___ | |
| | | | | |
| | |___| | |
| |_______| |
| |
|_______________|
Model: chutes/Qwen/Qwen3-Next-80B-A3B-Thinking .-.
/ \
| o o|
| > |
| ---|
\___/
Model: chutes/Qwen/Qwen3-30B-A3B-Instruct-2507 _________________________
/ \
| _ _ _ _ |
| / \ / \ / \ / \ |
| | | | | | | | | |
| \_/ \_/ \_/ \_/ |
| |
| _ _ _ _ |
| / \ / \ / \ / \ |
| | | | | | | | | |
| \_/ \_/ \_/ \_/ |
| |
| SpongeBob SquarePants |
|_________________________|
memorized: https://www.asciiart.eu/cartoons/spongebob-squarepants