The actual weights: https://huggingface.co/google/vaultgemma-1b
> VaultGemma is a variant of the Gemma family of lightweight, state-of-the-art open models from Google. It is pre-trained from the ground up using Differential Privacy (DP). This provides strong, mathematically-backed privacy guarantees for its training data, limiting the extent to which the model's outputs can reveal information about any single training example.
> VaultGemma was trained using Tensor Processing Unit (TPU) hardware TPUv6e. Training large language models with the significant computational overhead of differential privacy requires specialized hardware. TPUs are designed to handle the massive computations involved, offering the performance, memory, and scalability necessary to train models like VaultGemma efficiently and sustainably.
Seems like it requires TPUs to run, as DP has a huge performance impact, so we're unlikely to see this in homelabs and similar environments, as far as I understand.
Edit: On second read, the TPUs were only used for training, but no description if anything specific for the hardware is needed, so assuming it's fine with a regular GPU?