Yeah, I feel like I get really good results from AI, and this is very much how I prompt as well. It just takes care of writing the code, making sure to update everything that is touched by that code guided by linters and type-checkers, but it's always executing my architecture and algorithm, and I spend time carefully trying to understand the problem before I even begin.
But this is what I don't get. Writing code is not that hard. If the act of physically typing my code out is a bottleneck to my process, I am doing something wrong. Either I've under-abstracted, or over-abstracted, or flat out have the wrong abstractions. It's time to sit back and figure out why there's a mismatch with the problem domain and come back at it from another direction.
To me this reads like people have learned to put up with poor abstractions for so long that having the LLM take care of it feels like an improvement? It's the classic C++ vs Lisp discussion all over again, but people forgot the old lessons.