My tricks:
Define data structures manually, ask AI to implement specific state changes. So JSON, C .h or other source files of func sigs and put prompts in there. Never tried the Agents.md monolithic definition file approach
Also I demand it stick to a limited set of processing patterns. Usually dynamic, recursive programming techniques and functions. They just make the most sense to my head and using one style I can spot check faster.
I also demand it avoid making up abstractions and stick to mathematical semantics. Unique namespaces are not relevant to software in the AI era. It's all about using unique vectors as keys to values.
Stick to one behavior or type/object definition per file.
Only allow dependencies that are designed as libraries to begin with. There is a ton of documentation to implement a Vulkan pipeline so just do that. Don't import an entire engine like libgodot.
And for my own agent framework I added observation of my local system telemetry via common Linux files and commands. This data feeds back in to be used to generate right-sized sched_ext schedules and leverage bpf for event driven responses.
Am currently experimenting with generation of small models of my own data. A single path of images for example not the entire Pictures directory. Each small model is spun akin to a Docker container.
LLMs are monolithic (massive) zip files of the entire web. No one really asking for that. And anyone who needs it already has access to the web itself
small agents.md files are worth it, at least for holding some basic information (look at build.md to read how to build, the file structure looks like so), rather than have whatever burn double the amount of tokens searching for whatever anyways.