logoalt Hacker News

zekicayesterday at 7:12 AM3 repliesview on HN

You can't think all the way about refining your prompt for LLMs as they are probabilistic. Your re-prompts are just retrying until you hit a jackpot - refining only works to increase the chance to get what you want.

When making them deterministic (setting the temperature to 0), LLMs (even new ones) get stuck in loops for longer streams of output tokens. The only way to make sure you get the same output twice is to use the same temperature and the same seed for the RNG used, and most frontier models don't have a way for you to set the RNG seed.


Replies

red75primeyesterday at 9:09 AM

Randomness is not a problem by itself. Algorithms in BQP are probabilistic too. Different prompts might have different probabilities of successful generation, so refinement could be possible even for stochastic generation.

And provably correct one-shot program synthesis based on an unrestricted natural language prompt is obviously an oxymoron. So, it's not like we are clearly missing the target here.

show 1 reply
fulafelyesterday at 9:21 AM

Programs written in traditional PLs are also often probabilistic. It seems that the same mechanisms could be used to address this in both types (formal methods).

show 1 reply
cubefoxyesterday at 8:18 AM

... yet.