All modern models are processing images internally within its own neural network, they don't delegate it to some other/ocr model. Image data flows through the same paths as text, what do you mean by "quite limited" here?
Your first comment was refering to unconscious, now you don't mention it.
Regarding "conscious and linguistic" which you seem to be touching on now, taking aside multimodality - text itself is way richer for llms than for humans. Trivial example may be ie. mermaid diagram which describes some complex topology, svg which describes some complex vector graphic or complex program or web application - all are textual but to understand and create them model must operate in non linguistic domains.
Even pure text-to-text models have ability to operate in other than linguistic domains, but they are not text-to-text only, they can ingest images directly as well.
I was obviously talking about conscious and unconscious processes in humans, you are attempting to transport these concepts to LLMs, which is not philosophically sound or coherent, generally.
Everything you said about how data flows in these multimodal models is not true in general (see https://huggingface.co/blog/vlms-2025), and unless you happen to work for OpenAI or other frontier AI companies, you don't know for sure how they are corralling data either.
Companies will of course engage in marketing and claim e.g. ChatGPT is a single "model", but, architecturally and in practice, this at least is known not to be accurate. The modalities and backbones in general remain quite separate, both architecturally and in terms of pre-training approaches. You are talking at a high level of abstraction that suggests education from blog posts by non-experts: actually read papers on how the architectures of these multimodal models are actually trained, developed, and connected, and you'll see the multi-modality is still very limited.
Also, and most importantly, the integration of modalities is primarily of the form:
and not of the form I.e. most multimodal work is using linguistic models to represent or describe images linguistically, in the hope that the linguistic parts do the majority of the thinking and processing, but there is not much work using the image or video representations to do thinking, i.e. you "convert away" from most modalities into language, do work with token representations, and then maybe go back to images.But there isn't much work on working with visuospatial world models or representations for the actual work (though there is some very cutting edge work here, e.g. Sam-3D https://ai.meta.com/blog/sam-3d/, and V-JEPA-2 https://ai.meta.com/research/vjepa/). But precisely because this stuff is cutting edge, even from frontier AI companies, it is likely most of the LLM stuff you see is largely driven by stuff learned from language, and not from images or other modalities. So LLMs are indeed still mostly constrained by their linguistic core.