Curious what everyone thinks about this physicists idea
- the universe as a Neural Network (yes yes moving the universe model paradigm from the old Clockwork to machine to computer to neural network)
I found it interesting and speculative but also fascinating
See video here:
https://youtu.be/73IdQGgfxas?si=PKyTP8ElWNr87prG
AI summary of the video:
This video discusses Professor Vitaly Vanchurin's theory that the universe is literally a neural network, where learning dynamics are the fundamental physics (0:24). This concept goes beyond simply using neural networks to model physical phenomena; instead, it posits that the universe's own learning process gives rise to physical laws (0:46).
Key takeaways from the discussion include: • The Universe as a Neural Network (0:00-0:57): Vanchurin emphasizes that he is proposing this as a promising model for describing the universe, rather than a definitive statement of its ontological nature (2:48). The core idea is that the learning dynamics, which are typically used to optimize functions in machine learning, are the fundamental physics of the cosmos (6:20). • Deriving Fundamental Field Equations (21:17-22:01): The theory suggests that well-known physics equations, such as Einstein's field equations, Dirac, and Klein-Gordon equations, emerge from the learning process of this neural network universe. • Fermions and Particle Emergence (28:47-32:15): The conversation delves into how particles like fermions could emerge within this framework, with the idea that useful network configurations for learning survive, similar to natural selection. • Emergent Quantum Mechanics (44:53-49:31): The video explores how quantum behaviors, including the Schrödinger equation, could emerge from the two distinct dynamics within the system: activation and learning. This requires the system to have access to a "bath" or "reservoir" of neurons. • Natural Selection at the Subatomic Scale (1:05:10-1:07:34): Vanchurin suggests that natural selection operates on subatomic particles, where configurations that are more useful for minimizing the loss function (i.e., for efficient learning) survive and those that are not are removed. • Consciousness and Observers (1:15:40-1:24:09): The theory integrates the concept of observers into physics, proposing a three-way unification of quantum mechanics, general relativity, and observers. Consciousness is viewed as a measure of learning efficiency within a subsystem (1:30:38).