logoalt Hacker News

ActorNightlyyesterday at 5:41 PM4 repliesview on HN

Honestly, the rigid conception is the correct one. Im of the view that i as an attribute on a number rather than a number itself, in the same way a negative sign is an attribute. Its basically exists to generalize rotations through multiplication. Instead of taking an x,y vector and multiplying it by a matrix to get rotations, you can use a complex number representation, and multiply it by another complex number to rotate/scale it. If the cartesian magnitude of the second complex number is 1, then you don't get any scaling. So the idea of x/y coordinates is very much baked in to the "imaginary attribute".

I feel like the problem is that we just assume that e^(pi*i) = -1 as a given, which makes i "feel" like number, which gives some validity to other interpretations. But I would argue that that equation is not actually valid. It arises from Taylor series equivalence between e, sin and cos, but taylor series is simply an approximation of a function by matching its derivatives around a certain point, namely x=0. And just because you take 2 functions and see that their approximations around a certain point are equal, doesn't mean that the functions are equal. Even more so, that definition completely bypasses what it means to taking derivatives into the imaginary plane.

If you try to prove this any other way besides Taylor series expansion, you really cant, because the concept of taking something to the power of "imaginary value" doesn't really have any ties into other definitions.

As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself, while cos and sin follow cyclic patterns. If you were to replace e with any other number, note that anything you ever want to do with complex numbers would work out identically - you don't really use the value of e anywhere, all you really care about is r and theta.

So if you drop the assumption that i is a number and just treat i as an attribute of a number like a negative sign, complex numbers are basically just 2d numbers written in a special way. And of course, the rotations are easily extended into 3d space through quaternions, which use i j an k much in the same way.


Replies

jonahxyesterday at 6:31 PM

> As such, there is nothing really special about e itself either. The only reason its in there is because of a pattern artifact in math - e^x derivative is itself

Not sure I follow you here... The special thing about e is that it's self-derivative. The other exponential bases, while essentially the same in their "growth", have derivatives with an extra factor. I assume you know e is special in that sense, so I'm unclear what you're arguing?

show 1 reply
tsimionescuyesterday at 6:24 PM

This completely misses the point of why the complex numbers were even invented. i is a number: it is one of the 2 solutions to the equation x^2 = -1 (the other being -i, of course). The whole point of inventing the complex numbers was to have a set of numbers for which any polynomial has a root. And sure, you can call this number (0,1) if you want to, but it's important to remember that C is not the same as R².

Your whole point about Taylor series is also wrong, as Taylor series are not approximations, they are actually equal to the original function if you take their infinite limit for the relevant functions here (e^x, sin x, cos x). So there is no approximation to be talked about, and no problem in identifying these functions with their Taylor series expansions.

I'd also note that there is no need to use Taylor series to prove Euler's formula. Other series that converge to e^x,cos x, sin x can also get you there.

direwolf20yesterday at 5:45 PM

Rotations fell out of the structure of complex numbers. They weren't placed there on purpose. If you want to rotate things there are usually better ways.

show 2 replies
ttoinouyesterday at 5:45 PM

Yeah i is not a number. Once you define complex numbers from reals and i, i becomes a complex numbers but that's a trick

show 2 replies