logoalt Hacker News

phkahleryesterday at 5:56 PM2 repliesview on HN

To the ones objecting to "choosing a value of i" I might argue that no such choice is made. i is the square root of -1 and there is only one value of i. When we write -i that is shorthand for (-1)i. Remember the complex numbers are represented by a+bi where a and b are real numbers and i is the square root of -1. We don't bifurcate i into two distinct numbers because the minus sign is associated with b which is one of the real numbers. There is a one-to-one mapping between the complex numbers and these ordered pairs of reals.


Replies

FillMathsyesterday at 5:59 PM

You say that i is "the square root of -1", but which one is it? There are two. This is the point in the essay---we cannot tell the difference between i and -i unless we have already agreed on a choice of which square root of -1 we are going to call i. Only then does the other one become -i. How do we know that my i is the same as your i rather than your -i?

To fix the coordinate structure of the complex numbers (a,b) is in effect to have made a choice of a particular i, and this is one of the perspectives discussed in the essay. But it is not the only perspective, since with that perspective complex conjugation should not count as an automorphism, as it doesn't respect the choice of i.

show 3 replies
pfortunyyesterday at 6:03 PM

There is no way to distinguish between "i" and "-i" unless you choose a representation of C. That is what Galois Theory is about: can you distinguish the roots of a polynomial in a simple algebraic way?

For instance: if you forget the order in Q (which you can do without it stopping being a field), there is no algebraic (no order-dependent) way to distinguish between the two algebraic solutions of x^2 = 2. You can swap each other and you will not notice anything (again, assuming you "forget" the order structure).

show 1 reply