I am talking about constructivism, but that's not entirely the same as saying the reals are not uncountable. One of the harder things to grasp one's head around in logic is that there is a difference between, so to speak, what a theory thinks is true vs. what is actually true in a model of that theory. It is entirely possible to have a countable model of a theory that thinks it is uncountable. (In fact, there is a theorem that countable models of first order theories always exist, though it requires the Axiom of Choice).
I think that what matters here (and what I think is the natural interpretation of "not every real number is computable") is what the theory thinks is true. That is, we're working with internal notions of everything.