logoalt Hacker News

dgfltoday at 2:11 AM0 repliesview on HN

You seem to be familiar with the field, yet this is a very strange view? I work on exactly this slice of solid state physics and semiconductor devices. I’m not sure what you mean here.

The way we construct Hamiltonians is indeed somewhat ad hoc sometimes, but that’s not because of lack of fundamental knowledge. In fact, the only things you need are the mass of the electron/proton and the quantum of charge. Everything else is fully derived and justified, as far as I can think of. There’s really nothing other than the extremely low energy limit of QED in solid state devices, then it’s about scaling it up to many body systems which are computationally intractable but fully justified.

We don’t even use relativistic QM 95% of the time. Spin-orbit terms require it, but once you’ve derived the right coefficients (only needed once) you can drop the Dirac equation and go back to Schrödinger. The need for empirical models has nothing to do with fundamental physics, and all to do with the exorbitant complexity of many-body systems. We don’t use QFT and the standard model just because, as far as I can tell, the computation would never scale. Not really a fault of the standard model.