> I think this was all already figured out in 1986 though
They cite that paper in the third paragraph... Naively, the n-gluon scattering amplitude involves order n! terms. Famously, for the special case of MHV (maximally helicity violating) tree amplitudes, Parke and Taylor [11] gave a simple and beautiful, closed-form, single-term expression for all n.
It also seems to be a main talking point.I think this is a prime example of where it is easy to think something is solved when looking at things from a high level but making an erroneous conclusion due to lack of domain expertise. Classic "Reviewer 2" move. Though I'm not a domain expert and so if there was no novelty over Parke and Taylor I'm pretty sure this will get thrashed in review.
So it's a garbage headline, from an AI vendor, trying to increase hype and froth around what they are selling, when in fact the "new result" has been a solved problem for almost 40 years? Am I getting that right?
You're right. Parke & Taylor showed the simplest nonzero amplitudes have two minus helicities while one-minus amplitudes vanish (generically). This paper claims that vanishing theorem has a loophole - a new hidden sector exists and one-minus amplitudes are secretly there, but distributional